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Abstract In the context of nonlinear magnetoelasticity theory very few boundary-value problems have
been solved. The main problem that arises when a magnetic field is present, as compared with the purely
elastic situation, is the difficulty of meeting the magnetic boundary conditions for bodies with finite geom-
etry. In general, the extent of the edge effects is unknown a priori, and this makes it difficult to interpret
experimental results in relation to the theory. However, it is important to make the connection between
theory and experiment in order to develop forms of the magnetoelastic constitutive law that are capable
of correlating with the data and can be used for making quantitative predictions. In this paper the basic
problem of a circular cylindrical tube of finite length that is deformed by a combination of axial compres-
sion (or extension) and radial expansion (or contraction) and then subjected to an axial magnetic field
is examined. Such a field cannot be uniform throughout, since the boundary conditions on the ends and
the lateral surfaces of the tube would be incompatible in such circumstances. The resulting axisymmetric
boundary-value problem is formulated and then solved numerically for the case (for simplicity of illustra-
tion) in which the deformation is not altered by the application of the magnetic field. The distribution of
the magnetic-field components throughout the body and the surrounding space is determined in order to
quantify the extent of the edge effects for both extension and compression of the tube.

Keywords Nonlinear magnetoelasticity · Finite deformations · Magnetoelastic interactions

1 Introduction

Recently, a number of industrial applications that make use of so-called magneto-sensitive (MS) elastomers
have been developed. These include controllable membranes, controllable stiffness devices, and applica-
tions for the active control of structural components and rapid response interfaces aimed at optimizing the
performance of mechanical systems (see, for example, [1,2]). Such applications have great promise since
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MS elastomers rapidly and significantly change their mechanical properties on the application of a magnetic
field. There is therefore an increased need for reliable constitutive equations to model the magnetoelas-
tic properties of these materials for use in the analysis and solution of representative boundary-value
problems.

We refer to the recent series of papers by Dorfmann and Ogden [3–5] and the references con-
tained therein for the relevant theoretical background based on the general theory of nonlinear mag-
netoelasticity. These papers also contain solutions to representative boundary-value problems for which
exact solutions can be found. For the most part such solutions are idealized in the sense that they ap-
ply only to bodies of infinite extent in one or more directions so that edge effects are not present.
The purpose of the present paper is to apply the theory, using a prototype choice of model constit-
utive law, to a boundary-value problem involving finite geometry, for which an exact solution cannot
be found. Specifically, we consider as an illustrative problem the extension and inflation of a thick-
walled magnetoelastic tube of finite length in the presence of a magnetic field that, remote from the
tube, is uniform and in the axial direction. Numerical computation is used to determine the distribu-
tion of the magnetic field and the magnetic induction field throughout the body and its exterior, with
careful account taken of the boundary conditions on both the ends of the tube and its cylindrical sur-
faces.

We make use of a particularly simple general formulation for the magnetoelastic interaction, as described
by Dorfmann and Ogden [3]. The constitutive equation is based on a modified free-energy function
that depends, in addition to the deformation, on the magnetic-field vector as the independent mag-
netic variable. The relevant magnetic and mechanical balance equations and boundary conditions are
summarized in Sect. 2. In Sect. 3, following Dorfmann and Ogden [3], the general constitutive equa-
tions for magnetoelastic interactions are given for both compressible and incompressible magnetoelastic
materials and then specialized for specific application to incompressible, isotropic magnetoelastic materi-
als.

In Sect. 4, we consider the extension and inflation of a circular cylindrical tube of finite length subject
to a magnetic field, which, in the far field, is uniform and parallel to the axial direction of the tube. We
remark that, for an infinitely long cylinder, as discussed in [5], the boundary conditions on the cylindrical
surfaces can be satisfied exactly in the case of an axial magnetic field that is uniform through the body
and the surrounding space since the end conditions do not have an influence. For a finite-length tube,
on the other hand, the boundary conditions on the ends of the tube are not compatible with those on
the cylindrical surfaces if the field is uniform. Thus, the presence of the body, which is maintained in its
circular cylindrical shape by the application of suitable boundary tractions, distorts the originally uniform
magnetic field lines in the vicinity of the bounding surfaces, both within and exterior to the body. The
resulting boundary-value problem is two-dimensional and is solved using a finite-difference method, with
the radial and axial coordinates used as the independent spatial variables. For this purpose we introduce
a model constitutive law that can be seen as a prototype for describing the magnetoelastic response of
the materials in question. The solution process is reduced to the determination of two scalar potentials,
one for the inside of the body and the second for the surrounding vacuum, with appropriate continuity
conditions on the bounding interfaces. We determine the spatial distribution of the magnetic field in the
deformed configuration throughout the considered space. In particular, the distributions of the radial and
axial components of both the magnetic and magnetic-induction fields are shown graphically for the region
occupied by the body and its exterior, and the extent of the ‘edge’ effects is highlighted.

This particular problem is examined for purposes of illustration of the general formulation adopted
here, but, of course, the formulation is applicable to any well-posed boundary-value problem and there is
no need to restrict attention in general to an axial magnetic field. Our particular choice of problem has the
advantage that it represents a feasible experimental set-up and hence affords the possibility of obtaining
data to compare directly with the theory.
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2 Basic equations

2.1 Kinematics

Consider a magnetoelastic material occupying the reference configuration B0 when undeformed and in
the absence of a magnetic field. Let a material point in B0 be defined by its position vector X relative
to an arbitrarily chosen origin. When the body is subjected to the deformation χ , the point X assumes a
new position x = χ(X) in the resulting deformed configuration, which we denote by B. The deformation
gradient tensor F relative to B0, and its determinant, are

F = Gradχ , J = det F > 0, (1)

respectively, where Grad is the gradient operator with respect to X and wherein the notation J is defined.

2.2 Magnetic balance equations

Suppose that the deformed configuration B arises from the combined application of a magnetic field and
boundary tractions. The magnetic-field vector is denoted by H and the magnetic-induction vector by B. In
the absence of material, these are related by the standard equation

B = µ0H, (2)

where µ0 is the magnetic permeability in vacuo. Inside material, on the other hand, the two vectors are
connected via a constitutive law, which will be discussed in Sect. 3.

In either case, these vectors satisfy the field equations

curlH = 0, divB = 0, (3)

where curl and div, respectively, are the curl and divergence operators with respect to x. We are assuming
here that no free currents are present.

Equations 3 are expressed in Eulerian form. Inside a deformed material pull-back operations from B
to B0 give the corresponding Lagrangian forms of the magnetic field vector, denoted Hl, and magnetic
induction vector, denoted by Bl (see, for example, [3,6,7]). The connections are Hl = FTH and Bl = JF−1B,
where T signifies the transpose (of a second-order tensor). The counterparts of (3) for these vectors are
(within the material)

CurlHl = 0, DivBl = 0, (4)

where Curl and Div, respectively, are the curl and divergence operators with respect to X. Note that it is
not meaningful to define F and hence Hl and Bl outside the material.

2.3 Mechanical balance equations

Let ρ0 and ρ be the mass densities of the material in the reference and deformed configurations, B0 and B,
respectively. Then, recalling that J = det F, the conservation of mass equation can be written simply as

Jρ = ρ0. (5)

The influence of the magnetic field on the mechanical stress in the deforming body may be incorporated
through magnetic body forces or through a magnetic stress tensor. Here, we adopt the latter approach and
denote the resulting total (Cauchy) stress tensor by τ , which has the advantage of being symmetric. In the
absence of mechanical body forces, the equilibrium equation for a magnetoelastic solid has the (Eulerian)
form

divτ = 0. (6)

For more details we refer to, for example, [3,7,8].
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As in conventional nonlinear elasticity theory [9], we may define a ‘nominal’ stress tensor, here denoted
T and referred to as the total nominal stress tensor, which is related to τ by

T = JF−1τ . (7)

The equilibrium equation (6) may then be expressed simply in Lagrangian form as

DivT = 0. (8)

2.4 Boundary conditions

At the interfaces between the considered material body and its exterior appropriate boundary conditions
must be satisfied by the fields H, B and τ . In particular, the vector fields H and B satisfy the standard jump
conditions

n × [[H]] = 0, n · [[B]] = 0, (9)

where [[ · ]] signifies a discontinuity across the boundary and n is its outward unit normal. It is assumed here
that there are no surface currents. The boundary condition involving the stress τ , where traction rather
than displacement is specified, may be written in the form

[[τ ]]n = 0, (10)

and we note that the traction τn on the outer boundary includes a contribution from the (symmetric)
Maxwell stress outside the material as well as any mechanical traction applied to the surface of the body.
We recall (see, for example, [3]) that the Maxwell stress outside the material, denoted τm, is given by

τm = H ⊗ B − 1
2
(H · B)I, (11)

where I is the identity tensor and B = µ0H. Note that the exterior of the body in question is considered to
be either a vacuum or a magnetically inactive material.

Equations (9) and (10) may also be expressed in terms of the Lagrangian quantities Hl, Bl and T for the
reference counterpart of the discontinuity surface, for details of which we refer to [3].

3 Constitutive equations

In previous papers (for example, [3–5,10]) we considered formulations of the constitutive law based on
either Hl, Bl or the magnetization (not defined here) as the independent magnetic variable. However, for
the solution of more specific boundary-value problems it would seem simplest to work with Hl (or H) since
this can be expressed in terms of a scalar potential function. The resulting (coupled) partial differential
equations are then equations for this potential and, in the case of an incompressible material, when the
deformation is specified (as it is in the problem considered in Sect. 4) the hydrostatic part of the stress.

Thus, in the present paper we consider only a constitutive law with Hl as the independent magnetic
variable and write the ‘total’ energy function as

Ω∗ = Ω∗(F, Hl) (12)

in which Ω∗ is treated as a function of F and Hl. The superscript ∗ is retained in order to maintain consis-
tency with the notation used in the papers cited above. Then, for a compressible material, the total nominal
stress T and the magnetic induction Bl are given by the simple formulas

T = ∂Ω∗

∂F
, Bl = −∂Ω∗

∂Hl
, (13)
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and for an incompressible material by

T = ∂Ω∗

∂F
− p∗F−1, Bl = −∂Ω∗

∂Hl
, (14)

where p∗ is a Lagrange multiplier associated with the incompressibility constraint

det F = 1. (15)

The corresponding Eulerian quantities are given by

τ = J−1F
∂Ω∗

∂F
, B = −J−1F

∂Ω∗

∂Hl
, (16)

and

τ = F
∂Ω∗

∂F
− p∗I, B = −F

∂Ω∗

∂Hl
(17)

for compressible and incompressible materials, respectively, where I is again the identity tensor.

3.1 Isotropic magnetoelastic materials

The applied magnetic field introduces a preferred direction in the material analogous to the preferred
direction in a transversely isotropic elastic solid. Paralleling the analysis of Spencer [11] for transversely
isotropic materials (see also [12,13]), we define an isotropic magnetoelastic material as one for which Ω∗
is an isotropic function of the two tensors c and Hl ⊗ Hl, where c = FTF is the right Cauchy–Green tensor.
Here we consider only incompressible materials, for which the principal invariants of c, denoted by I1 and
I2, are given by

I1 = trc, I2 = 1
2

[
(trc)2 − tr(c2)

]
, (18)

with I3 ≡ det c = 1, where tr denotes the trace of a second-order tensor. The additional invariants involving
Hl are denoted (in the notation of [3]) by K4, K5, K6 and are defined by

K4 = |Hl|2, K5 = (cHl)·Hl, K6 = (c2Hl)·Hl. (19)

For an incompressible material, Ω∗ reduces to a function that depends on these five invariants and we
write Ω∗ = Ω∗(I1, I2, K4, K5, K6).

The total stress τ and the magnetic induction field B given in (17) now expand out as

τ = 2Ω∗
1b + 2Ω∗

2(I1b − b2) − p∗I + 2Ω∗
5bH ⊗ bH + 2Ω∗

6(bH ⊗ b2H + b2H ⊗ bH), (20)

B = −2(Ω∗
4bH + Ω∗

5b2H + Ω∗
6b3H), (21)

where b = FFT is the left Cauchy–Green tensor and Ω∗
i is defined as ∂Ω∗/∂Ii for i = 1, 2, and ∂Ω∗/∂Ki for

i = 4, 5, 6.
In Sect. 4 we apply the above constitutive equations, field equations and boundary conditions in Eulerian

form to the problem at hand.

4 Extension and inflation of a cylindrical tube

In a previous paper [5] we considered the extension and inflation of an infinitely long circular cylindrical
tube subjected to an axial and a circumferential magnetic field. Solutions for the change in radius as a
function of the applied pressure and for the corresponding resultant axial load were given using first the
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magnetic induction Bl and subsequently the magnetic-field vector Hl as the independent magnetic-field
variables.

In this section we again consider the extension and inflation of a cylindrical tube with circular cross-
section subjected to an axial magnetic field H, but now for a tube of finite length. Unlike the situation
for an infinitely long tube, close to the material boundaries, the magnetic-field lines deviate from the axial
direction, essentially because the normal component of B has to be continuous across the plane ends of
the tube, and this boundary condition is not compatible with both the presence of a uniform axial field and
the boundary condition that the tangential component of H has to be continuous across the cylindrical sur-
faces. As a result, it does not appear possible to find a closed-form analytical solution for the magnetic-field
distribution, either inside the body or in the surrounding space. We therefore adopt a numerical scheme
to determine the distributions of the magnetic field and magnetic-induction vectors.

4.1 Kinematics

In terms of cylindrical polar coordinates (R, �, Z) we describe the undeformed reference configuration of
the tube by

0 < A ≤ R ≤ B, 0 ≤ � ≤ 2π 0 ≤ Z ≤ L, (22)

where the interior and exterior radii are denoted by A and B and the total length by L. The tube is
deformed by the action of suitable boundary tractions, so that the circular cylindrical shape is maintained.
The resulting deformed configuration is then described using cylindrical polar coordinates (r, θ , z) by

0 < a ≤ r ≤ b, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ l, (23)

where l is the deformed length of the tube and a and b the corresponding inner and outer radii. For an
incompressible material, the deformation is given by

r =
√

cR2 + d, θ = �, z = λzZ, (24)

where the axial stretch, denoted λz, is constant, c = λ−1
z and d is a constant (= a2 − cA2).

The deformation-gradient tensor F, with respect to the polar coordinate axes, then has component
matrix, here denoted F, in cylindrical coordinates given by

F = diag [λ−1λ−1
z , λ, λz], (25)

in which λ is defined as λ = r/R. The diagonal entries are just the principal stretches

λ1 = λ−1λ−1
z , λ2 = λ ≡ r

R
, λ3 = λz, (26)

which satisfy the incompressibility condition (15) in the form λ1λ2λ3 = 1.

4.2 The field equations

The considered problem is axisymmetric when a magnetic field is applied that is axial and uniform far from
the tube. Thus, in the deformed configuration, there is no dependence on θ , and the magnetic-field vectors
and the stress tensor depend on both the radius r and the axial coordinate z, i.e., B = B(r, z), H = H(r, z),
and τ = τ (r, z). Note that, in general, when the magnetic field is applied to a circular cylindrical tube,
when deformed as described in the above section, it will deform further and into a configuration in which
the deformation depends on z as well as r unless appropriate stresses are applied to maintain the shape.
Here we assume that such stresses are applied so that the deformation is known explicitly. The problem
involving a more general axisymmetric deformation will be considered elsewhere.
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For the numerical calculation we shall work in terms of the Eulerian forms of the field equations, which
we summarize here as

curlH = 0, divB = 0, divτ = 0. (27)

From the first equation in (27) we deduce the existence of a scalar (magnetic) potential function ϕ such
that

H = −gradϕ, (28)

which applies both within and outside the material, and we note in passing that Hl = FTH = −Gradϕ.
Now, outside the body, where we assume that B = µ0H, as in vacuum or in a material with no magneti-

zation, we have divH = 0 and (28) yields Laplace’s equation

∇2ϕ = 0 (29)

for the potential ϕ.
On the other hand, inside the material the magnetic induction is determined by the constitutive law (21),

which for convenience we write compactly as

B = −CH ≡ C gradϕ, (30)

where C is defined as

C = 2(Ω∗
4b + Ω∗

5b2 + Ω∗
6b3), (31)

which depends on gradϕ as well as the deformation.
Since, inside the material, we again have the field equation divB = 0 then, instead of (29), we have the

equation

div(C gradϕ) = 0 (32)

inside the material. The potential ϕ can be taken as continuous across the interfaces, so that we do not
use separate notations for it within and outside the material. For an energy function Ω∗ and for a known
deformation b = FFT, Eqs. (29) and (32) can in principle be solved for the scalar potential ϕ subject to the
boundary conditions (9) applied to the interfaces. As a consequence, the spatial distributions of the fields
H and B and the stress distribution can be determined.

We now turn briefly to the equilibrium equation (27)3. For the considered deformation it is easy to show
from (20) that τrθ = τθz = 0 and that (27)3 reduces to the two component equations

∂τrr

∂r
+ ∂τrz

∂z
+ 1

r
(τrr − τθθ ) = 0,

∂τrz

∂r
+ ∂τzz

∂z
+ 1

r
τrz = 0. (33)

Since the normal components τrr and τzz involve the Lagrange multiplier p∗ these two equation essentially
determine p∗ as a function of r and z and hence the distribution of stress and the mechanical boundary
tractions required to maintain the deformation. We do not therefore consider these equations further.

4.3 Boundary conditions

Let the magnetic far-field boundary condition for this problem be given as a constant axial magnetic field
with nonzero component H0, i.e., the applied field is parallel to the axis of the tube, as depicted in Fig. 1.
Due to interaction with the body, the magnetic field lines deviate from the axial direction near the bound-
aries so as to satisfy the continuity conditions specified in (9), and the field will therefore depend on both
coordinates r and z.

A circular cylindrical tube subjected to axial extension and inflation maintains its original axisymmetric
configuration provided suitable boundary tractions are applied. The numerical solution can therefore be
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Fig. 1 The
three-dimensional
problem of a deformed
circular cylindrical tube in
an axial magnetic far field
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reduced to a two-dimensional problem restricted to the r–z-plane, as illustrated in Fig. 2. For the given
deformation, determination of the magnetic field distribution reduces firstly to defining a particular form
of the energy function Ω∗ in terms of the invariants I1, I2, K4, K5, K6 and secondly to finding a solution of
Eq. (32) for the scalar potential ϕ for points inside the body. In the surrounding space, the solution of the
Laplace equation (29) determines ϕ.

The continuity condition on the material interfaces given by the equation n × [[H]] = 0 is satisfied
automatically, since ϕ may be taken as continuous across these boundaries, as noted earlier. The continuity
condition [[B]] · n = 0 requires that the radial component Br is continuous across r = a and r = b and that
the axial component Bz is continuous across the ends of the tube z = 0 and z = l (here z is measured
relative to the origin 03 in Fig. 2).

4.4 Illustration

Solutions of (29) and (32) are needed in order to determine the magnetic-field distributions inside the
material and in the surrounding space. In terms of the cylindrical coordinates r and z, Eq. (29) has the form

∂2ϕ

∂r2 + 1
r

∂ϕ

∂r
+ ∂2ϕ

∂z2 = 0, (34)

and Eq. (32) becomes
(Crr

r
+ ∂Crr

∂r

)
∂ϕ

∂r
+ Crr

∂2ϕ

∂r2 + ∂Czz

∂z
∂ϕ

∂z
+ Czz

∂2ϕ

∂z2 = 0, (35)

where Crr = Crr(r, z) and Czz = Czz(r, z) are the radial and axial normal components of C. For purposes
of numerical computation it is necessary to restrict attention to a finite region. We therefore choose a
computational grid whose dimensions are nine times the length of the tube in the axial direction and five
times the inner radius (of the tube) in the radial direction, and, for definiteness, we set b = 2a (see Fig. 2).
Different choices do not affect the results significantly.
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In general, extensive experimental test data are required to develop specific forms of Ω∗ in order to
correlate data with the solution of this problem. Such data are not currently available for the considered
problem, although some data from uniaxial traction and simple shear experiments have recently been pro-
duced (see, for example, [14–18]). In the absence of suitable data, we introduce a specific prototype form
of Ω∗ that reflects the behaviour observed in the limited experiment data on magnetoelastic elastomers
available in the literature.

For purposes of illustration we consider a simplified form of Ω∗ that depends only on I1 and K4. Then,
the stress (20) and magnetic induction (21) reduce to

τ = 2Ω∗
1b − p∗I, B = −2Ω∗

4bH, (36)

respectively, with H = −gradϕ. We also define a dimensionless form of K4, namely K̄4 = K4/κ , where
κ is a constant that enables a suitable scaling to be made in order to produce the appropriate relative
magnitudes of the mechanical and magnetic effects.

To be more specific, we now consider the form of Ω∗ given by

Ω∗ = 1
k

[
α0 + β0 tanh

(
K̄n

4
)]

[
(I1 − 1)k

2k
− 1

]
+ ν

(
K̄4

)
, (37)

where α0, β0, n and k are positive constants, with n ≥ 1, k ≥ 1/2. (Note that α0 corresponds to the shear
modulus of the underlying elastic material in the absence of magnetic effects.) The form of (37) is moti-
vated by an elastic strain–energy function that has been used to solve a number of specific boundary-value
problems (see, for example, [19]) and reduces to it in the absence of a magnetic field provided we take
ν(0) = 0. When there is no deformation, the first term vanishes, which allows the remaining term involving
the function ν to be interpreted as the magnetic energy in the undeformed configuration (in which there is
a residual stress due to the presence of the magnetic field).

It is convenient to assume a form for ν such that ν′(K̄4) is given by

ν′ (K̄4
) = −κγ0K̄n−1

4 sech2 (
K̄n

4
) + κδ0 tanh

(
K̄2

4

)
− κε0, (38)

where γ0, δ0 and ε0 are constants. An explicit expression for the function ν can be obtained by integrating
(38) but is not needed here.

In the expressions (36) we require the explicit forms of Ω∗
1 and Ω∗

4, which are

Ω∗
1 = [

α0 + β0 tanh
(
K̄n

4
)] (I1 − 1)k−1

2k
, (39)

Ω∗
4 = nβ0

kκ
K̄n−1

4 sech2 (
K̄n

4
) [

(I1 − 1)k

2k
− 1

]
− γ0K̄n−1

4 sech2 (
K̄n

4
) + δ0 tanh

(
K̄2

4

)
− ε0. (40)

These equations provide the nonlinear dependences of Ω∗
1 and Ω∗

4 on K4, which are illustrated in the Fig. 3.
The choice of the dependence of Ω∗ given in (37) on K̄4 is motivated by reference to the phenomenon

of magnetic saturation that arises for magnetic fields of sufficient strength, as we now discuss. First we
note that for a magnetoelastic material with negligible magnetization, the magnetic induction in the unde-
formed configuration is given approximately by B = µ0H, while from (36)2 we have B = −2Ω∗

4H. Thus,
for very small magnetization and infinitesimal deformation, the numerical value of −2Ω∗

4 should approach
the value of the permeability µ0. On the other hand, for an increasing magnetic field, the material reaches
magnetic saturation and Ω∗

4 approaches a limiting value that is independent of K4, as illustrated in Fig. 3.
The precise nature of the dependence of Ω∗

1 and Ω∗
4 on K4 remains to be determined when sufficient data

become available. In Fig. 3, Ω∗
1 (left-hand figure) and Ω∗

4 (right-hand figure) are each plotted against K4 for
three different values of I1, specifically I1 = 3.1027, 3.3, 3.5. The first of these arises as the smallest value
of I1 through the wall in the numerical solution of the problem, while the other two values are chosen to



148 J Eng Math (2007) 59:139–153

0 1 2 3 4 5
0.95

1

1.05

1.1
x 10

6
x 10

7

0 1 2 3 4 5

x 10
11

x 10
11

-7

-6

-5

-4

-3

-2

-1

0

K 4K 4

Ω
* 1

Ω
* 4

I1a
I1a I1bI1b I1cI1c

Fig. 3 The nonlinear dependence of Ω∗
1 (left figure) and Ω∗

4 (right figure) on K4 (which has units [Amp2/m2]) for I1 =
3.1027 (I1a), 3.3 (I1b), 3.5 (I1c)

Table 1 Numerical
values for the parameters
used in the energy
function

α0 2.025 [MPa]
β0 0.2 [MPa]
γ0 9.49344×10−8 [N/Amp2]
δ0 5×10−7 [N/Amp2]
ε0 2π × 10−7 [N/Amp2]
κ 2.15×1011 [Amp2/m2]
k 3/4
n 2

illustrate the dependence on the deformation. For the solution of the considered boundary-value problem
we use, for simplicity, the dependence given by Eqs. (39) and (40), as reflected in Fig. 3. The values of the
different constants that appear in (39) and (40) are given in Table 1. Note, in particular, that ε0 = µ0/2.

In the next subsection, the numerical results obtained for the spatial distribution of the magnitudes of the
magnetic field and magnetic induction are summarized. To solve (34) and (35) a finite-difference method
is used, with the required boundary conditions enforced by using a recurrence algorithm. Different aspect
ratios of the cylindrical tube are considered: specifically, we use aspect ratios l/a = 4, 6, 8 and describe
the deformation through the constants c and d introduced in Eq. (24). Axial compression (extension)
corresponds to c > 1 (<1), and we consider values c = 0.5, 1, 1.2, 2 with d = 0 or 0.0002 (in the latter d
is nondimensionalized by choosing units so that A = 1). The magnetic-field distributions inside the tube
wall in the undeformed configuration are compared with those in the deformed configurations. For each
calculation we set b = 2a, so that the wall thickness of the tube is a, as shown in Fig. 2. Note that for
d = 0 the deformation is homogeneous, while for d �= 0 the deformation is nonhomogeneous since λ then
depends on r.
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4.5 Results

Let the applied magnetic field be parallel to the axial direction of the circular tube at ‘infinity’. The field is
distorted by the presence of the magnetoelastic solid and a radial component of the field is generated in
the neighbourhood of the material boundaries, both outside and inside the material.

Figure 4 shows the dimensionless magnitude of the axial component of the magnetic field through the
material wall for an arbitrary (r, z) plane and for aspect ratio l/a = 4. For this illustration the values c = 1.2
and d = 0.0002 were chosen. The origin of the nondimensionalized coordinate system in Fig. 4 is indicated
by 02 in Fig. 2, so that r/a and z/l both run from 0 to 1. The results show that the magnetic field is essentially
constant away from the boundary and symmetric about the centre z/l = 0.5 of the tube. Similarly, for the
same geometry and deformation, the dimensionless magnitude of the radial component of the magnetic
field is shown in Fig. 5, which reveals that the radial component is antisymmetric with respect to z/l = 0.5
and r/a = 0.5. In each case the magnetic field is nondimensionalized with respect to the far field H0, which
is given the value 105 Amp/m.

The magnitudes of the axial and radial components of the magnetic field within the material depend on
the aspect ratio l/a of the tube. The distribution of these values along the line i1i2 identified in Fig. 2 is
shown in Fig. 6 for aspect ratios l/a = 4, 6, 8. The line i1i2 is located at a distance of 3a/2 from the centreline
shown in Fig. 2. The magnitude of the axial component shows a greater dependence on the aspect ratio
than the radial component. The extent of the ‘edge’ effects and nonuniformity of the axial magnetic field
is apparent, while the radial component of the field is relatively small.

Variations in the magnitudes of the dimensionless axial and radial components of the magnetic field in
the radial direction at two different axial locations are shown in Fig. 7 for aspect ratios of l/a = 4, 6, 8.
Two significant locations are considered, at z/l = 0.5 and z/l = 0.25, which are indicated, respectively,
by the lines j1j2 and j3j4 in Fig. 2. It is interesting to note that in each case the radial component of the
magnetic field vanishes on the centre line z/l = 0.5, as expected from the antisymmetric distribution shown
previously in Fig. 5. In Figs. 6 and 7 the values c = 1.2 and d = 0.0002 were again used.

Figure 8 shows the variation of the axial and radial components along the line i1i2 when the tube is
undeformed (c = 1, d = 0) or subjected to the deformation corresponding to the parameters c = 0.5
(extension), c = 2 (compression), with d = 0.0002 in each case. An aspect ratio of l/a = 4 is used
here. Extension of the tube has, in particular, a tendency to make the axial field more uniform while
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Fig. 6 Magnitudes of the
dimensionless axial and
radial components of the
magnetic field
Hi/H0, i = r, z, along the
axial direction for aspect
ratios l/a = 4, 6, 8 and at
radial location i1i2 in
Fig. 2, for c = 1.2 and
d = 0.0002
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compression has the opposite effect. Similarly, the variations of the same components along the radial
direction, located at z/l = 0.25 and indicated by j3j4 in Fig. 2, are shown in Fig. 9 for the undeformed and
deformed configurations. In this case no clear pattern in the relative effects of extension and compression
is evident.

In Fig. 10, at the radial station corresponding to the line i1i2 in Fig. 2, the axial component Bz and the
radial component Hr are plotted in dimensionless forms (respectively Bz/B0 and Hr/H0, with B0 = µ0H0)
for the whole axial range of the computation (with z/l running from 0 to 9) in order to illustrate the
continuity of the axial component of the magnetic induction B and the radial component of the magnetic
field H. The component Bz is continuous on the ends of the tube (located at z/l = 4, 5). This is clearly
shown in the upper graph of Fig. 10 for aspect ratios of l/a = 4, 6 and 8. Outside the material, the magnetic
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induction is obtained from the applied magnetic field by application of the standard equation B = µ0H.
The continuity of the radial component Hr of the magnetic field on the same boundaries is illustrated in
the lower graph in Fig. 10. Also, outside the material and sufficiently far from the tube the magnetic field
reduces to a field with an axial component only, i.e., the radial component vanishes. For these computations
the values c = 1.2 and d = 0.0002 were used.

Figure 11 shows the dimensionless radial component of the magnetic induction and the axial component
of the magnetic field for aspect ratios of 4, 6 and 8 along the line j3j4 located at z/l = 0.25 (relative to the
origin 02 in Fig. 2). The cylindrical boundaries correspond to r/a = 1, 2. Note, that the radial component
of the magnetic induction vanishes on the tube axis, as expected. As in Fig. 10 the values c = 1.2 and
d = 0.0002 were used for the calculations.

5 Closing remarks

In this paper we have obtained illustrative numerical solutions of Eq. (35) for the body and of Laplace’s
equation (34) for its exterior using the continuity conditions (9). This is the first time in the nonlinear
context, as far as we are aware, that full account has been taken of the boundary conditions in order to
quantify the extent of the edge effects associated with the finite geometry. The constitutive model that
we have introduced is a prototype model in that it represents a first attempt towards the development of
constitutive models that can be correlated with experimental data as such data become available.

For problems with finite geometry such as that considered here it is clear that closed form analytic
solutions cannot be found and numerical solution is necessary. For more complex geometries it will be
appropriate to use a finite-element framework for the solution of more general boundary-value problems.
Such a framework is currently being developed. This approach inevitably requires consideration of ques-
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tions such as convexity of the energy function and aspects of stability. Some discussion of this is contained
in the paper by Kankanala and Triantafyllidis [8], but a more detailed treatment of these aspects is needed.

Finally, we have assumed here that the considered magnetoelastic material is isotropic. However, the
magnetoelastic effects seem to be enhanced if the magnetic particles are distributed in an elastomer during
the curing process in the presence of a magnetic field (see, for example, [18]). Under such conditions the
particles are aligned by the magnetic field and generate a preferred direction in the material, so that it is
no longer isotropic. This requires a more general form of constitutive law, details of which will be reported
in a separate communication.
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